Hoy en día, uno de los procedimientos más críticos, pero menos conocidos, en materia de ciberseguridad industrial es el de desarrollo seguro. Este artículo recoge todas las buenas prácticas para la creación de aplicaciones y equipos específicos para entornos industriales de manera segura. Aspectos de seguridad que debe tener en cuenta tanto el trabajo realizado durante el diseño (confidencialidad de la empresa y clientes, seguridad de los trabajadores…), como la seguridad que el propio producto diseñado debe presentar durante todo su ciclo de vida (gestión de vulnerabilidades, control de acceso, gestión de inputs/outputs…).
El objetivo de este artículo es abordar las buenas prácticas de desarrollo seguro, desde la perspectiva de la ciberseguridad industrial. Aunque las buenas prácticas tradicionales pueden ser aplicables a estos entornos, los aspectos fundamentales de safety y disponibilidad generan diferentes enfoques, fundamentalmente en aspectos relativos a la gestión de memorias y recursos, ciclos de gestión de actualizaciones y parches, etc.
Este artículo pretende presentar una breve guía de ejemplo para una implantación de la nueva normativa en las instalaciones de un proveedor.
Recorriendo los puntos críticos de la norma, se seguirá un caso de uso genérico para ejemplificar cómo un fabricante de vehículos puede adaptar sus procesos para cumplir con la nueva normativa de manera eficiente y eficaz.
Presentando una visión global de la norma y los procesos de producción, se pretende aportar una breve guía que sirva como punto de partida y ayude a evitar los fallos habituales en entornos industriales, cuando se tiene que hacer frente a nuevas regulaciones, encontrándose entre estos fallos la redundancia de esfuerzos, la poca eficiencia en la gestión de recursos y las deficiencias en la aplicación de medidas de seguridad.Este artículo pretende presentar una breve guía de ejemplo para una implantación de la nueva normativa en las instalaciones de un proveedor.
Recorriendo los puntos críticos de la norma, se seguirá un caso de uso genérico para ejemplificar cómo un fabricante de vehículos puede adaptar sus procesos para cumplir con la nueva normativa de manera eficiente y eficaz.
Presentando una visión global de la norma y los procesos de producción, se pretende aportar una breve guía que sirva como punto de partida y ayude a evitar los fallos habituales en entornos industriales, cuando se tiene que hacer frente a nuevas regulaciones, encontrándose entre estos fallos la redundancia de esfuerzos, la poca eficiencia en la gestión de recursos y las deficiencias en la aplicación de medidas de seguridad.
Las redes de control industrial de mayor escala y complejidad presentan riesgos y necesidades de ciberseguridad que habitualmente no pueden alcanzarse aplicando un modelo de segmentación tradicional. Factores como la presencia de equipos obsoletos críticos, equipos gestionados por terceros o el incremento en la presencia de tecnologías IoT que requieren conexiones externas, están motivando la adopción de arquitecturas más avanzadas a la hora de aplicar el principio de defensa en profundidad.
Una correcta segmentación puede ser un aspecto fundamental en la prevención de ataques, fundamentalmente en su propagación hasta activos esenciales y críticos en la producción. También resulta importante, adecuarse al entorno a segmentar. Es un error muy común tratar de segmentar las redes partiendo de conceptos y esquemas similares al entorno IT.
En este artículo se expondrán algunos nuevos modelos de redes y consejos para trabajar en una segmentación correcta en un entorno donde conviven diversos componentes implicados (OT, IIoT, IT, IoT).
MITRE Caldera OT se destaca principalmente por ser una herramienta de código abierto que permite la simulación de diferentes ciberataques en entornos industriales. Esta herramienta fue creada por MITRE y CISA (US Cybersecurity and Infrastructures Security Agency), ya que los expertos veían la necesidad de poder mejorar y comprender la ciberseguridad en entornos industriales sin utilizar una alta cantidad de recursos.
Además, esta herramienta está pensada para ser utilizada, tanto por el equipo de Red Team como por el de Blue Team, permitiendo que ambos equipos colaboren entre sí para mejorar el nivel de ciberseguridad en dichos entornos.
En la era de la interconexión y digitalización, los sistemas de control industrial (SCI) están cada vez más expuestos a amenazas cibernéticas. Estos sistemas son vitales para la producción de energía, manufactura y gestión de infraestructuras críticas, y su protección se ha vuelto una prioridad esencial.
El análisis de riesgos es fundamental en este contexto, ya que permite identificar, evaluar y priorizar los riesgos que pueden afectar a los SCI. Este proceso abarca desde vulnerabilidades técnicas, hasta amenazas emergentes, y es crucial para desarrollar estrategias efectivas de mitigación y protección.
En este artículo, se explorarán los desafíos y soluciones relacionados con el análisis de riesgos en los SCI, así como la importancia del estándar IEC 62443-3-2 en este proceso crítico.
Los gemelos digitales, también conocidos como digital twins, son recreaciones virtuales de objetos o procesos del mundo real. Esta innovadora idea, propuesta por el Dr. Michael Grieves, ha cobrado cada vez más relevancia en diversos sectores industriales gracias al avance de tecnologías como el modelado 3D, el Internet de las Cosas (IoT), el IIoT (Internet Industrial de las Cosas), el aprendizaje automático (machine learning) y el análisis de grandes volúmenes de datos (big data). Su aplicación permite simular y analizar procesos físicos de forma eficiente, contribuyendo así a la transformación digital de la industria, también conocida como industria 4.0.
El propósito fundamental de los gemelos digitales radica en facilitar la comprensión de cómo operan los elementos en el mundo físico. Por ejemplo, en el ámbito de la manufactura, es posible crear un gemelo digital de una fábrica y mediante simulaciones explorar diferentes escenarios. ¿Qué sucedería si se modificara una máquina? ¿Cómo impactaría en la producción? El gemelo digital brinda respuestas antes de realizar cambios reales en el entorno físico, lo que agiliza la toma de decisiones y optimiza procesos.
UMAS (Unified Messaging Application Services) es un protocolo patentado de Schneider Electric (SE) que se utiliza para configurar y supervisar controladores lógicos programables (PLCs) de Schneider Electric. Si bien es cierto que el protocolo está relacionado con este fabricante, el uso del protocolo es bastante extendido en diferentes sectores sobre todo el sector energía como es obvio.
El artículo se centrará en el desglose técnico del protocolo y en el uso de este. Dentro del artículo se mostrarán también debilidades, fortalezas y algunas vulnerabilidades a nivel técnico detectadas en este protocolo.